Meet-in-the-Middle and Impossible Differential Fault Analysis on AES

Patrick Derbez², Pierre-Alain Fouque² and Delphine Leresteux^{1,3}

¹DGA Information Superiority

²École Normale Supérieure

³Université Paris VII

30th September 2011

Presentation

- AES backgrounds
- Previous Fault Analysis on AES
- Meet-in-the-Middle Fault Analysis
- Impossible Differential Fault Analysis
- Extension to AES-192 and AES-256

AES Backgrounds

Previous Fault Analysis Our Differential Fault Analysis Extension AES State AES Properties

Description of the AES

Figure: SubBytes, ShiftRows, MixColumns and AddRoundKey operations

AES Backgrounds

Previous Fault Analysis Our Differential Fault Analysis Extension AES State AES Properties

AES Properties

Subkeys

- The knowledge of only one subkey allows to retrieve the whole key for AES-128.
- The knowledge of two consecutive subkeys allows to recover the entire key for AES-192 and for AES-256.

AES diffusion

Two rounds of AES achieve a full diffusion for all keysize variants of AES.

< D > < A > < B >

Overall DFA on AES Piret and Quisquater's DFA Mukhopadhyay's DFA

< 日 > < 同 > < 三 > < 三 >

э

Previous Fault Analysis on AES

Authors	Fault model	Faults	Round	AES	Paper
Tunstall <i>et al.</i>	Simple byte	1	<i>n</i> – 2	128	WISTP11
Mukhopadhyay	Simple byte	1	<i>n</i> – 2	128	Africa09
Piret <i>et al.</i>	Simple byte	2	<i>n</i> – 2	128	CHES03
Dusart <i>et al.</i>	Simple byte	50	n-1	128	ACNS03

Table: Summary of differential fault analysis

Overall DFA on AES Piret and Quisquater's DFA Mukhopadhyay's DFA

< 日 > < 同 > < 三 > < 三 >

э

Previous Fault Analysis on AES

Authors	Fault model	Faults	Round	AES	Paper
We	Simple byte	≤2048	<i>n</i> – 3	256	CHES11
We	Simple byte	\leq 1000	<i>n</i> – 3	128	CHES11
Tunstall <i>et al.</i>	Simple byte	1	<i>n</i> – 2	128	WISTP11
Mukhopadhyay	Simple byte	1	<i>n</i> – 2	128	Africa09
Piret <i>et al.</i>	Simple byte	2	<i>n</i> – 2	128	CHES03
Dusart <i>et al.</i>	Simple byte	50	n-1	128	ACNS03

Table: Summary of differential fault analysis

Overall DFA on AES Piret and Quisquater's DFA Mukhopadhyay's DFA

イロン イロン イヨン イヨン

CHES 2003: Piret and Quisquater

Equation on byte 0

 $SB^{-1}(\mathcal{C}(0)\oplus \mathcal{K}_{10}(0))\oplus SB^{-1}(\tilde{\mathcal{C}}(0)\oplus \mathcal{K}_{10}(0))=X$

Figure: State-of-the-art differential fault analysis on AES-128

Overall DFA on AES Piret and Quisquater's DFA Mukhopadhyay's DFA

< 日 > < 同 > < 三 > < 三 >

э

AFRICACRYPT 2009: Mukhopadhyay

Equation on byte 12

 $SB^{-1}(MC^{-1}(SB^{-1}(C \oplus K_{10}) \oplus K_{9})) \oplus SB^{-1}(MC^{-1}(SB^{-1}(\tilde{C} \oplus K_{10}) \oplus K_{9})) = 3X$

Figure: Fault path - fault analysis on l'AES-128

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

<ロ> <同> <同> < 同> < 同>

э

Meet-in-the-Middle Differential Fault Analysis (1)

Figure: Meet-in-the-middle differential fault analysis for AES-128

P. Derbez, P.-A. Fouque and D. Leresteux Differential Fault Analysis on AES

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

Meet-in-the-Middle Differential Fault Analysis (2)

Equation on byte 0

P. Derbez, P.-A. Fouque and D. Leresteux

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

Meet-in-the-Middle Differential Fault Analysis (3)

Equation on byte 1

$$X=S_8(1)\oplus ilde{S}_8(1)=S_8(0)\oplus ilde{S}_8(0)$$

P. Derbez, P.-A. Fouque and D. Leresteux

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

Meet-in-the-Middle Differential Fault Analysis (4)

Equation on byte 2

$$3X = S_8(2) \oplus \tilde{S}_8(2) = 3(S_8(0) \oplus \tilde{S}_8(0))$$

P. Derbez, P.-A. Fouque and D. Leresteux

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

Meet-in-the-Middle Differential Fault Analysis (5)

Equation on byte 3

$$2X = S_8(3) \oplus \tilde{S}_8(3) = 2(S_8(0) \oplus \tilde{S}_8(0))$$

P. Derbez, P.-A. Fouque and D. Leresteux

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

< D > < A > < B >

Resolution

Facts

- Differential no linear equation system with 10 unknown,
- Fault model: random fault on one byte at known position,
- Fault is injected between the MixColumns at the 6th round and the MixColumns at the 7th round,
- 10 couples of correct and faulty ciphertexts: 10 equations.

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

< D > < A > < B >

Extension of Fault Model

Known Fault Position

For each equation, less one unknown value.

Same Fault Position, but Unknown

Same mean of fault injection at the same time \implies same unknown faulty bytes \implies 4 \times computations.

Random and Unknown Fault Position

4 possible different cases for each couple of correct and faulty ciphertexts \implies 4¹⁰ cost for 10 pairs for all hypotheses \implies unpractical.

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

- - ◆ 同 ▶ - ◆ 目 ▶

Reduction of Memory Requirement

Similar Attack

- Using the automatic research tool presented at CRYPTO 2011 by Bouillaguet, Derbez and Fouque.
- If all five faults are performed on the same byte.
- Less memory, 2^{24} instead of 2^{40} and same time complexity 2^{40} .
- Attack has been experimentally checked.

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

A B > A B >

Revisited Impossible Differential Fault Analysis

CARDIS 2006: Phang and Yen

 $2^{11} = 2048$ faults required

Figure: Impossible differential fault analysis on AES-128

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

Recovery K_{10}

Inequation on byte 0

 $\mathit{MC}^{-1}|_0(\mathit{SB}^{-1}(\mathit{C}(0)\oplus \mathit{K}_{10}(0)))\oplus \mathit{MC}^{-1}|_0(\mathit{SB}^{-1}(\tilde{\mathit{C}}(0)\oplus \mathit{K}_{10}(0)))\neq 0$

Scenario

- For each pair, 4 guesses for $\{K_{10}(0), K_{10}(13), K_{10}(10), K_{10}(7)\}.$
- Delete each quadruplet of bytes from the subkey K_{10} which does not satisfy the inequation system.
- Repeat each previous step until only one possible quadruplet of K_{10} for each column or exhaustive search is possible for AES-128.

< ロ > < 同 > < 回 > < 回 >

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

• □ ▶ • • □ ▶ • • □ ▶

Resolution

Facts

- 4 systems of 4 inequalities,
- Fault model: random fault on one random byte,
- Fault is injected between the MixColumns at the 6th round and the MixColumns at the 7th round,
- 1000 couples in average + exhaustive search are required.

Recombination Property

Goal: Reduce the number of faults needed.

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

▲ □ ► < □ ►</p>

Recombination

Two Different Faulty Results with the Same Input Plaintext and the Same Faulty Byte

Two different faulty ciphertexts \implies inequation systems

Inequation

$$S_{10}(\tilde{C}^{(1)}) \oplus S_{10}(\tilde{C}^{(2)}) \neq 0$$

Number of faults required

45 couples of correct and faulty ciphertexts.

Meet-in-the-Middle Differential Fault Analysis Revisited Impossible Differential Fault Analysis

Image: A = A

Theoretical Cost and Complexity for Impossible Differential

Complexity

- 1 couple of correct and faulty ciphertexts, delete 2²⁶ quadruplets of K₁₀ bytes among 2³² possibles.
- 2 couples of correct and faulty results, overlap of 2²⁰.
- With 1000 pairs of correct and faulty ciphertexts, we reject more than $2^{32} 2^{10}$ quadruplets.

AES-192 & AES-256 To Sum it Up Conclusion

< ロ > < 同 > < 回 > < 回 >

Extension to AES-192 and to AES-256

Description: with the same fault and for AES-192 and AES-256, we have both access to the subkeys K_n and K_{n-1}

AES-128, inject one fault between the MixColumns at the 6^{th} round and the MixColumns at the 7^{th} round

AES-192, inject one fault between the MixColumns at the 8^{th} round and the MixColumns at the 9^{th} round

AES-256, inject one fault between the MixColumns at the 10^{th} round and the MixColumns at the 11^{th} round.

AES-192 & AES-256 To Sum it Up Conclusion

Generalized Piret and Quisquater

Figure: K_n is found, research of K_{n-1}

3

AES-192 & AES-256 To Sum it Up Conclusion

Differential Fault Analysis Presented on AES-128

Fault analysis	Fault model	Faults	Time	Memory
MiTM	known byte	10	$\simeq 2^{40}$	$\simeq 2^{40}$
MiTM	fixed unknown byte	10	$\simeq 2^{42}$	$\simeq 2^{40}$
MiTM	unknown byte	10	$\simeq 2^{60}$	$\simeq 2^{40}$
MiTM	fixed unknown byte	5	$\simeq 2^{40}$	$\simeq 2^{24}$
Impossible	unknown byte	1000	$\simeq 2^{40}$	$\simeq 2^{40}$
Impossible	fixed unknown byte	45	$\simeq 2^{40}$	$\simeq 2^{40}$

Table: Summary of new differential fault analysis presented on AES-128

< 日 > < 同 > < 三 > < 三 >

э

AES-192 & AES-256 To Sum it Up Conclusion

Differential Fault Analysis Presented on AES-192 and AES-256

Fault analysis	Fault model	Faults	Time	Memory
MiTM	known byte	10	$\simeq 2^{40}$	$\simeq 2^{40}$
MiTM	fixed unknown byte	10	$\simeq 2^{42}$	$\simeq 2^{40}$
MiTM	unknown byte	10	$\simeq 2^{60}$	$\simeq 2^{40}$
MiTM	fixed unknown byte	5	$\simeq 2^{40}$	$\simeq 2^{24}$
Impossible	unknown byte	2048	$\simeq 2^{40}$	$\simeq 2^{40}$
Impossible	fixed unknown byte	65	$\simeq 2^{40}$	$\simeq 2^{40}$

Table: Summary of new differential fault analysis presented on AES-192 and AES-256 $\,$

< 日 > < 同 > < 三 > < 三 >

AES-192 & AES-256 To Sum it Up Conclusion

< 日 > < 同 > < 三 > < 三 >

э

Conclusion

Differential Fault Analysis on AES-128, AES-192 and AES-256

- Protect all rounds of AES-128,
- Protect the last 5 rounds and the first 5 rounds for AES-192 and for AES-256.