Meet-in-the-Middle and Impossible Differential Fault Analysis on AES

Patrick Derbez ${ }^{2}$, Pierre-Alain Fouque ${ }^{2}$ and Delphine Leresteux ${ }^{1,3}$
${ }^{1}$ DGA Information Superiority
${ }^{2}$ École Normale Supérieure
${ }^{3}$ Université Paris VII

30th September 2011

Presentation

- AES backgrounds
- Previous Fault Analysis on AES
- Meet-in-the-Middle Fault Analysis
- Impossible Differential Fault Analysis
- Extension to AES-192 and AES-256

Description of the AES

S(0)	S(4)	$\mathrm{S}(8)$	S(12)	$\mathrm{S}^{\prime}(0)$	$S^{\prime}(4)$	$\mathrm{S}^{\prime}(8)$	$S^{\prime}(12)$	$S^{\prime}(0)$	$S^{\prime}(4)$	$S^{\prime}(8)$	$S^{\prime}(12)$	S"(0)	$S^{\prime \prime}(4)$	$S^{\prime \prime}(8)$	$S^{\prime \prime}(12)$	
S(1)	S(5)	S(9)	S(13)	$\mathrm{S}^{\prime}(1)$	$S^{\prime}(5)$	$S^{\prime}(9)$	$S^{\prime}(13)$	$S^{\prime}(5)$	$\mathrm{S}^{\prime}(9)$	$S^{\prime}(13)$	$S^{\prime}(1)$	$S^{\prime \prime}(5)$	$S^{\prime \prime}(9)$	$S^{\prime \prime}(13)$	$\mathrm{S}^{\prime \prime}(1)$	
S(2)	S(6)	S(10)	S(14)	$S^{\prime}(2)$	$S^{\prime}(6)$	$S^{\prime}(10)$	$S^{\prime}(14)$	$S^{\prime}(10)$	$S^{\prime}(14)$	$S^{\prime}(2)$	$S^{\prime}(6)$	S"(10)	$S^{\prime \prime}(14)$	S"(2)	$S^{\prime \prime}(6)$	
S(3)	S(7)	S(11)	$\mathrm{S}(15)$	$\mathrm{S}^{\prime}(3)$	$S^{\prime}(7)$	$\mathrm{S}^{\prime}(11)$	$S^{\prime}(15)$	$S^{\prime}(15)$	$\mathrm{S}^{\prime}(3)$	S(7)	S (11)	$S^{\prime \prime}(15)$	$\mathrm{S}^{\prime \prime}(3)$	$S^{\prime \prime}(7)$	$\mathrm{S}^{\prime \prime}(11)$	
SubBytes								ShiftRows						AddRou	undKey	SubKey

Figure: SubBytes, ShiftRows, MixColumns and AddRoundKey operations

Characteristics

- 128-bit input block,
- 128-bit keysize - 10 rounds
- 192-bit keysize - 12 rounds
- 256-bit keysize - 14 rounds

Definition

AES is a Substitution Permutation Network symmetric algorithm.

AES Properties

Subkeys

- The knowledge of only one subkey allows to retrieve the whole key for AES-128.
- The knowledge of two consecutive subkeys allows to recover the entire key for AES-192 and for AES-256.

AES diffusion

Two rounds of AES achieve a full diffusion for all keysize variants of AES.

Previous Fault Analysis on AES

Authors	Fault model	Faults	Round	AES	Paper
Tunstall et al.	Simple byte	1	$n-2$	128	WISTP11
Mukhopadhyay	Simple byte	1	$n-2$	128	Africa09
Piret et al.	Simple byte	2	$n-2$	128	CHES03
Dusart et al.	Simple byte	50	$n-1$	128	ACNS03

Table: Summary of differential fault analysis

Previous Fault Analysis on AES

Authors	Fault model	Faults	Round	AES	Paper
We	Simple byte	≤ 2048	$n-3$	256	CHES11
We	Simple byte	≤ 1000	$n-3$	128	CHES11
Tunstall et al.	Simple byte	1	$n-2$	128	WISTP11
Mukhopadhyay	Simple byte	1	$n-2$	128	Africa09
Piret et al.	Simple byte	2	$n-2$	128	CHES03
Dusart et al.	Simple byte	50	$n-1$	128	ACNS03

Table: Summary of differential fault analysis

CHES 2003: Piret and Quisquater

Equation on byte 0

$$
S B^{-1}\left(C(0) \oplus K_{10}(0)\right) \oplus S B^{-1}\left(\tilde{C}(0) \oplus K_{10}(0)\right)=X
$$

Figure: State-of-the-art differential fault analysis on AES-128

AFRICACRYPT 2009: Mukhopadhyay

Equation on byte 12

$$
S B^{-1}\left(M C^{-1}\left(S B^{-1}\left(C \oplus K_{10}\right) \oplus K_{9}\right)\right) \oplus S B^{-1}\left(M C^{-1}\left(S B^{-1}\left(\tilde{C} \oplus K_{10}\right) \oplus K_{9}\right)\right)=3 X
$$

Figure: Fault path - fault analysis on l'AES-128

AES Backgrounds

Meet-in-the-Middle Differential Fault Analysis (1)

AddRoundKey

Figure: Meet-in-the-middle differential fault analysis for AES-128

Meet-in-the-Middle Differential Fault Analysis (2)

Equation on byte 0

$$
S_{8}(0) \oplus \tilde{S}_{8}(0)=X
$$

SB SubBytes
S9
ShiftRows S10 MixColumns
S11
AddRoundKey

Meet-in-the-Middle Differential Fault Analysis (3)

Equation on byte 1

$$
X=S_{8}(1) \oplus \tilde{S}_{8}(1)=S_{8}(0) \oplus \tilde{S}_{8}(0)
$$

Meet-in-the-Middle Differential Fault Analysis (4)

Equation on byte 2

$$
3 X=S_{8}(2) \oplus \tilde{S}_{8}(2)=3\left(S_{8}(0) \oplus \tilde{S}_{8}(0)\right)
$$

Meet-in-the-Middle Differential Fault Analysis (5)

Equation on byte 3

$$
2 X=S_{8}(3) \oplus \tilde{S}_{8}(3)=2\left(S_{8}(0) \oplus \tilde{S}_{8}(0)\right)
$$

Resolution

Facts

- Differential no linear equation system with 10 unknown,
- Fault model: random fault on one byte at known position,
- Fault is injected between the MixColumns at the $6^{\text {th }}$ round and the MixColumns at the $7^{\text {th }}$ round,
- 10 couples of correct and faulty ciphertexts: 10 equations.

Extension of Fault Model

Known Fault Position

For each equation, less one unknown value.

Same Fault Position, but Unknown

Same mean of fault injection at the same time \Longrightarrow same unknown faulty bytes $\Longrightarrow 4 \times$ computations.

Random and Unknown Fault Position

4 possible different cases for each couple of correct and faulty ciphertexts $\Longrightarrow 4^{10}$ cost for 10 pairs for all hypotheses \Longrightarrow unpractical.

Reduction of Memory Requirement

Similar Attack

- Using the automatic research tool presented at CRYPTO 2011 by Bouillaguet, Derbez and Fouque.
- If all five faults are performed on the same byte.
- Less memory, 2^{24} instead of 2^{40} and same time complexity 2^{40}.
- Attack has been experimentally checked.

Revisited Impossible Differential Fault Analysis

CARDIS 2006: Phang and Yen

$2^{11}=2048$ faults required

Figure: Impossible differential fault analysis on AES-128

Recovery K_{10}

Inequation on byte 0

$\left.M C^{-1} \mathrm{l}_{0}\left(S B^{-1}\left(C(0) \oplus K_{10}(0)\right)\right) \oplus M C^{-1}\right|_{0}\left(S B^{-1}\left(\tilde{C}(0) \oplus K_{10}(0)\right)\right) \neq 0$

Scenario

- For each pair, 4 guesses for $\left\{K_{10}(0), K_{10}(13), K_{10}(10), K_{10}(7)\right\}$.
- Delete each quadruplet of bytes from the subkey K_{10} which does not satisfy the inequation system.
- Repeat each previous step until only one possible quadruplet of K_{10} for each column or exhaustive search is possible for AES-128.

Resolution

Facts

- 4 systems of 4 inequalities,
- Fault model: random fault on one random byte,
- Fault is injected between the MixColumns at the $6^{\text {th }}$ round and the MixColumns at the $7^{\text {th }}$ round,
- 1000 couples in average + exhaustive search are required.

Recombination Property

Goal: Reduce the number of faults needed.

Recombination

Two Different Faulty Results with the Same Input Plaintext and the Same Faulty Byte
 Two different faulty ciphertexts \Longrightarrow inequation systems

Inequation

$S_{10}\left(\tilde{C}^{(1)}\right) \oplus S_{10}\left(\tilde{C}^{(2)}\right) \neq 0$

Number of faults required

45 couples of correct and faulty ciphertexts.

Theoretical Cost and Complexity for Impossible Differential

Complexity

- 1 couple of correct and faulty ciphertexts, delete 2^{26} quadruplets of K_{10} bytes among 2^{32} possibles.
- 2 couples of correct and faulty results, overlap of 2^{20}.
- With 1000 pairs of correct and faulty ciphertexts, we reject more than $2^{32}-2^{10}$ quadruplets.

Extension to AES-192 and to AES-256

Description: with the same fault and for AES-192 and AES-256, we have both access to the subkeys K_{n} and K_{n-1}
AES-128, inject one fault between the MixColumns at the $6^{\text {th }}$ round and the MixColumns at the $7^{\text {th }}$ round

AES-192, inject one fault between the MixColumns at the $8^{\text {th }}$ round and the MixColumns at the $9^{\text {th }}$ round

AES-256, inject one fault between the MixColumns at the $10^{\text {th }}$ round and the MixColumns at the $11^{\text {th }}$ round.

Generalized Piret and Quisquater

Figure: K_{n} is found, research of K_{n-1}

Differential Fault Analysis Presented on AES-128

Fault analysis	Fault model	Faults	Time	Memory
MiTM	known byte	10	$\simeq 2^{40}$	$\simeq 2^{40}$
MiTM	fixed unknown byte	10	$\simeq 2^{42}$	$\simeq 2^{40}$
MiTM	unknown byte	10	$\simeq 2^{60}$	$\simeq 2^{40}$
MiTM	fixed unknown byte	5	$\simeq 2^{40}$	$\simeq 2^{24}$
Impossible	unknown byte	1000	$\simeq 2^{40}$	$\simeq 2^{40}$
Impossible	fixed unknown byte	45	$\simeq 2^{40}$	$\simeq 2^{40}$

Table: Summary of new differential fault analysis presented on AES-128

Differential Fault Analysis Presented on AES-192 and AES-256

Fault analysis	Fault model	Faults	Time	Memory
MiTM	known byte	10	$\simeq 2^{40}$	$\simeq 2^{40}$
MiTM	fixed unknown byte	10	$\simeq 2^{42}$	$\simeq 2^{40}$
MiTM	unknown byte	10	$\simeq 2^{60}$	$\simeq 2^{40}$
MiTM	fixed unknown byte	5	$\simeq 2^{40}$	$\simeq 2^{24}$
Impossible	unknown byte	2048	$\simeq 2^{40}$	$\simeq 2^{40}$
Impossible	fixed unknown byte	65	$\simeq 2^{40}$	$\simeq 2^{40}$

Table: Summary of new differential fault analysis presented on AES-192 and AES-256

Conclusion

Differential Fault Analysis on AES-128, AES-192 and AES-256

- Protect all rounds of AES-128,
- Protect the last 5 rounds and the first 5 rounds for AES-192 and for AES-256.

